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ABSTRACT 

Abstract: Impact events are of interest during the service life of commercial and military aircraft 

and reliably assessing the location of impact damage is important for aircraft maintenance. 

Traditional impact detection for aircraft is generally confined to visual inspections between the 

flights intermittently followed by more comprehensive and detailed inspections. The purpose of 

the study described herein is to investigate a path forward for the automated detection and 

localization of impact events. Machine learning is investigated as a means to improve upon 

traditional inspection methods. A flight amenable impact monitoring system was developed and 

utilized to detect and localize impact events on a thermoplastic aircraft elevator in a laboratory 

setting at the McNAIR Aerospace Center. Steel spheres were dropped from a controlled height on 

the elevator skin to simulate damaging events that may occur during flight. To keep weight, power, 

and cabling to a minimum a single sensor was attached to the spar of the elevator. A source 

localization approach based on random forest is proposed. Several features were extracted, and 

feature importance was ranked using random forest. The selected features were gathered as a 

dataset to train and test the performance of the proposed source localization approach. Results 

demonstrate the efficacy and potential of the random forest-based approach for localization of 

impact event monitoring for the application of a thermoplastic aircraft elevator. 
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1. INTRODUCTION 

Aircraft structures are exposed to impact damage during their service life caused by debris and 

hail. The primary design concern in composite structures is the resistance of layered surfaces 

against accidental damage such as impact. Therefore, the localization and damage quantification 

of damage impacts should be studied and considered to guarantee flight safety and prevent severe 

structural failure. Since the aircraft structural components are large scale, the visual inspection and 

monitoring of them are challenging and subject to human errors. A real time health monitoring 

system can be applied to automatically recognize and localize the impact damage instead of 

manually inspection.  

Acoustic emission (AE) is a promising nondestructive structural health monitoring technology 

which can be applied on the impact monitoring of aircraft. This method is sensitive and has 

continuous monitoring capabilities [1-3]. It has been widely used for the detection and evaluation 

of composite damage [for example, 4-10]. Ono et al. [4] evaluated the damage of carbon fiber 

reinforced polymer (CFRP) plates under dynamic load using AE signals, Impact tests were 
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conducted on four types of CFRP plates with a steel sphere. AE sensors were attached on both 

surfaces of the specimens. The results indicated that several failure modes were detected under 

dynamic loading in comparison to quasi-static loading. Matrix crack propagation was the 

dominated failure mode, while other failure modes such as delamination could not be discerned 

clearly. Marec et al [5] identified the damage mechanisms in polymer-based composite materials 

by using AE monitoring. A three-point bending test was performed on a fiber-matrix composite 

specimen, while two AE sensors were applied for signals collection. Unsupervised pattern 

recognition analysis and principal component analysis (PCA) were utilized for classification of the 

AE signals. The classification results performed a good correlation to the damage mechanisms of 

the composite specimen being monitored. Liu et al. [6] studied on the failure mechanisms and 

damage evolution of carbon fiber/epoxy composite laminates. The acoustic emission data during 

tensile test was mapping with the results that watched and analyzed by scanning electron 

microscope (SEM). The study demonstrated that failure modes including the splitting matrix 

cracking, fiber/matrix interface debonding, fiber pull-out and breakage and delamination could be 

represented by creating true mapping based on the data recorded by AE monitoring. Whitlow et 

al. [7] proposed an approach for associating in situ AE detection with final failure in continuous 

fiber reinforced ceramic matrix composites (CMCs). Digital image correlation (DIC) was used for 

obtaining surface strain measurements. The results shown there was good agreement between the 

two techniques. Saidane et al. [8] investigated the evaluation of damage mechanisms during tensile 

tests in hybrid flax-glass fibres reinforced epoxy composites. AE monitoring was conducted for 

providing signals during the tests. Comparing with the results observed by SEM, a conclusion was 

made: the cumulative of AE energy could indicate the overall failure of composite. Dia et al. [9] 

analyzed the characterization of damages in a hybrid laminate aluminum /glass during quasi-static 

and fatigue tests. Principal Components Analysis (PCA), k-means unsupervised clustering analysis, 

classification and regression Trees (CART) were used for damage identification. Results shown it 

was possible to identify damage in fibre metal laminates (FML) during both quasi-static and 

fatigue test. Khamedi et al. [10] identified failure mechanisms of unidirectional carbon/epoxy 

composites by studying the wavelet packet transform of AE signal processing. AE events were 

recorded during tensile test. The collected AE data was converted to wavelet for comparing with 

SEM observations. The results of this study pointed out that the wavelet transformed from AE 

waveform could link to the damage mechanisms of unidirectional carbon/epoxy composites. 

However, there is limited access to attach AE sensor on the aircraft. One of the main challenges to 

accomplish the AE-based real time monitoring is developing a method to localize the impacts with 

a maximum level of certainty and using a single sensor. To solve this problem. Random forest is 

investigated as a mean to achieve the localization of impact events 

Random forest is an ensemble algorithm. By combining multiple decision trees, the final result 

can be voted or averaged to make the overall model results with high accuracy and generalization 

performance. Random forest has an advantage that the impotence of input variables can be ranked. 

A features selection can be conducted based on this. Random forest has been successfully applied 

in the fields of faults fault diagnosis based on vibration and AE signals. Cerrada et al. [11] built a 

robust system for the multi-class fault diagnosis in spur gears using genetic algorithm and random 

forest. An acceptable diagnose accuracy was obtained based on the real vibration signals. Patel et 

al. [12] presented random forest classifier as an approach for classification of bearing fault and 

features selection. The most important features of vibration signals were selected and assigned to 

the random forest model. Results indicated the random forest is turn out to be a suitable approach 
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for fault diagnosis of any rotating machine. Shevchik et al. [13] utilized AE and random forest as 

tool to investigate the prediction of the scuffing failure in lubricated mechanical components. A 

good performance was observed by using wavelet-derived features as input data. Those previous 

research shows using random forest might be an approach to select appropriate features and 

improve the passive health monitoring system. 

In this study, a minimally intrusive impact detection system is explored through acoustic emission 

monitoring and random forest model. A single AE sensor was employed to detect and collect AE 

data during impact.  Random forest model was utilized for source localization. An impact 

experiment was conducted on a thermoplastic aircraft elevator in the laboratory environment to 

verity the efficiency of the proposed impact detection system. The results show that the impact 

monitoring system using AE and random forest is reliable and has high accuracy in locating the 

impact area.  

 

2. METHODOLOGY 

2.1 Acoustic Emission monitoring 

AE is a physical phenomenon that stress waves are generated by the rapid release of elastic energy 

when the object is under the condition of external force or deformation. AE signals can reflect 

some properties of the object. By attaching AE sensors to the surface of the object, the AE signal 

can be detected. The technique of collecting, analyzing and using AE signals to diagnose the status 

of the object is called AE nondestructive monitoring. By processing the AE signal, it can be 

transformed into different AE features. Commonly used AE features such as “Amplitude”, 

“Counts”, “Energy”, “Rise time” and “Duration” are shown in Figure 1.  In this study, A single 

AE sensor was employed to detect and collect AE data during impact. 15 features were extracted 

from the signals and formed an AE dataset. The source localization approach by using these AE 

features from one sensor is introduced in Section 2.2. 

 

Figure 1. AE waveform and typical features 
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2.2 Random forest model 

A random forest classification model contains 100 decision trees was utilized in this study as the 

approach for source localization. The AE dataset contain 15 features. They are “Amplitude”, 

“Count”, “Rise time”,  “Duration”, “Average frequency”, “Root mean square”, “Average signal 

level”, “Energy”, “Absolute energy”, “Peak frequency”, “Reverberation frequency”, “Initial 

frequency”, “Signal strength”, “Frequency centroid” and “Counts to peak”. Those features were 

utilized for features selection. A ranking of the importance of features is given by random forest 

model. The features with the majority importance are gathered as input dataset to train and test the 

impact source localization random forest. The reason for conducting the feature selection is that: 

impacts occur frequently during the flight and the AE system collects a large amount of AE signals 

while the data storage space is limited. By reducing the dimension, the required storage can be 

saved for more AE collecting. The input dataset after feature selection is utilized to build 100 

subsets by using bootstrapping method. Each subset is assigned to its own decision tree. These 

decision trees inside the random forest work independently and generate their own localization 

results. The final result (Zone number) is given by voting. Figure 2 shows the random forest used 

in this article. The output of the random forest model is the zone number of the corresponding AE 

event. The determination of zones is presented in Section 4.1 

 

Figure 2. Configuration of random forest model 
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inches. The hinge brackets on the elevator spar were connected to hinge points located on the 

frame. A turnbuckle was used to apply bending in the elevator to simulate the flexure of the 

horizontal tail during flight. 

To collect the dataset for random forest. An impact tests were conducted using steel balls of 1/2 

inch in diameter. The drop height of the steel ball is kept constant at 2 feet (Figure 3). A tube was 

used as a guide to control each impact’s location and height.  

 

 

Figure 3. Steel ball dropping test 

Three locations were marked on each rib. The impact locations are shown in Figure 4, marked as 

red points. Each location was impacted 60 times by the steel ball. An AE sensor was attached on 

the front spar of the elevator as shown in Figure 4. 

 

Figure 4. Impact and sensor locations 
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and presented in the PC space in Figure 5. This clustering was used to define the zones for the 

random forest model as shown in Figure 6. From left to right, the elevator is divided by zone 1, 

zone 2 and zone 3. 

 

Figure 5. Clustered data in PC space 

 

Figure 6. Zone division 

 

4.2 Source localization 

Dataset with 15 features was assigned to the random forest model as input. The ratios for training 

and testing dataset are 66.7% and 33.3%. The overall accuracy of impact localization is 98.33%, 

as shown in the confusion matrix (Figure 7). The localized accuracy of zone 1 to 3 is 98.67%, 

98.33% and 98.20%.  This result is compared with the case when using input dataset after feature 

selection. The details are shown in Section 4.3. 
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Figure 7. Accuracy of impact source localization 

4.3 Features selection 

By using the random forest model, this study analyzes the importance of the AE signal features. 

The names of these 15 features and their corresponding percentages of importance are shown in 

Figure 8. By observing Figure 8, it can be noticed that the features "count", "amplitude", "duration", 

"signal strength" and "energy" account for a large proportion of the overall importance of the 

feature, their cumulative importance reaches 65% out of the overall importance. Those features 

have a major impact on the source localization results. The importance of the rest features is 

relatively low. Deleting them will not have a significant impact on localization performance. 

 

Figure 8. Ranking of the features 
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It can be noticed that reducing the input dimension from 15 to 5 lead to a slightly decreasing in the 

accuracy of impact localization while the required storage for input decrease from 299,008 byte to 

90,112 bytes. Almost 68.86% of the storage can be saved for more AE signals collection. 

Table.1 Comparison of the accuracy by different input 

Input Storage (byte)  Accuracy 

15 features 299,008 98.33% 

5 features 90,112 97.75% 

 

 

5. CONCLUSIONS 

In this study, impact experiment was conducted on a real-scale thermoplastic elevator specimen. 

Acoustic emission monitoring was utilized to capture signals during impact. Several AE features 

were extracted from the acquired AE signals. Random forest model was assigned to select 

appropriate features and give the source localization results based on the selected features 

 

Pertinent conclusions are: 

1. By employing AE monitoring and using random forest as a source localization approach. A 

good performance on the impact detection and localization can be observed when a single AE 

sensor is used. 

2. The localization accuracy decreases slightly after deleting the features with relative low 

importance. Meanwhile the required data storage is significantly reduced.  During the flight, 

the AE acquisition can keep several necessary features and delete the others to save the storage 

space for long term monitoring. 

Further work could be an investigation of the influence of the steel ball’s size during the impact 

testing. Other advanced machine learning technique like deep learning could be investigated for 

the impact detection system in the future.  
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